

[Optimal Networks for Train Integration Management across Europe] Collaborative Project 7th Framework Programme ON-TIME research major disturbances (WP5)

Trafikverket seminar Joaquin Rodriguez, IFSTTAR, Borlange, 16 th October 2014

Research aims and objectives

WP5 : Operation management of large scale disruptions

- To specify the integration of the real-time traffic and asset management procedures, optimization models and tools;
- To develop algorithms for resource management in the case of a large disruption;
- To design and validate effective intelligent decision support strategies and tools

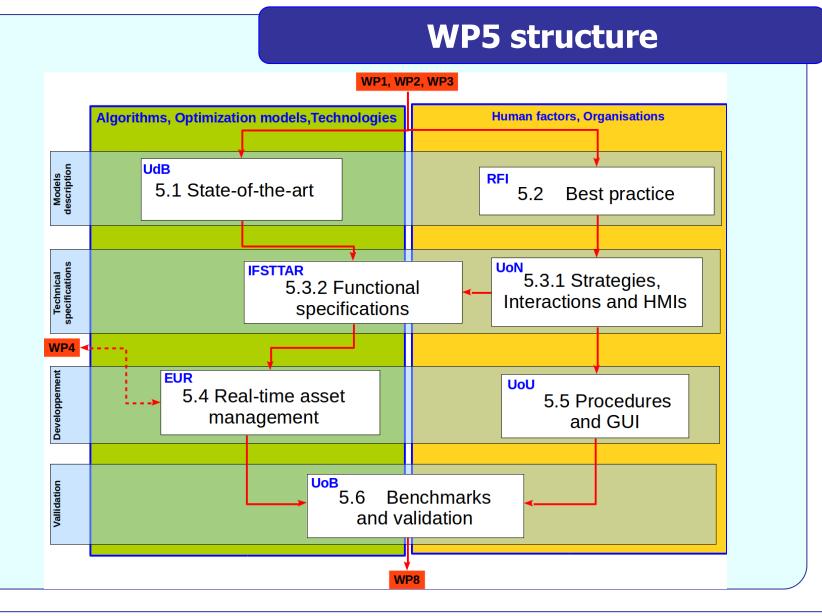
Research aims and objectives

Large perturbations: perturbations that need a change to the way in which resources were originally planned will be managed by IM and RU controllers.

"**Resources**" : - Infrastructure capacity;

- Rolling stock;

- Crew.

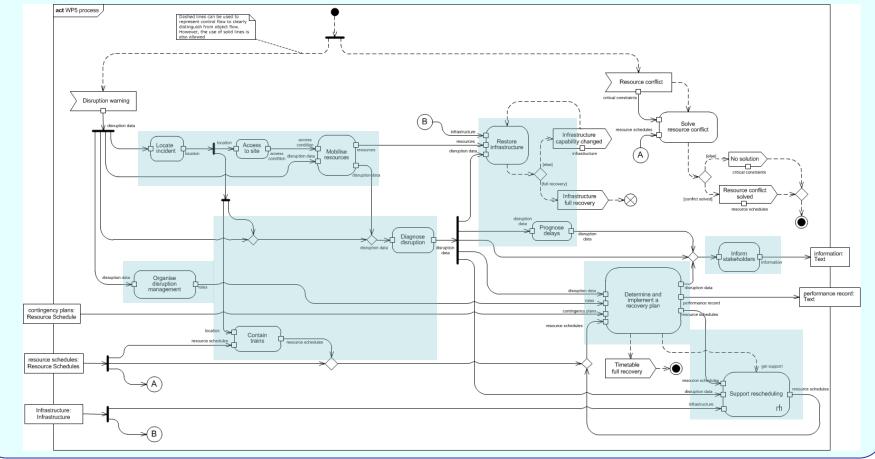

Examples:

- Broken catenaries
- Accidents with other traffic

Consequences : One or more tracks blocked for a certain period of time

FP7 - ON-TIME Collaborative Project

Borlänge, 16th October2014


Human Factor / HMI

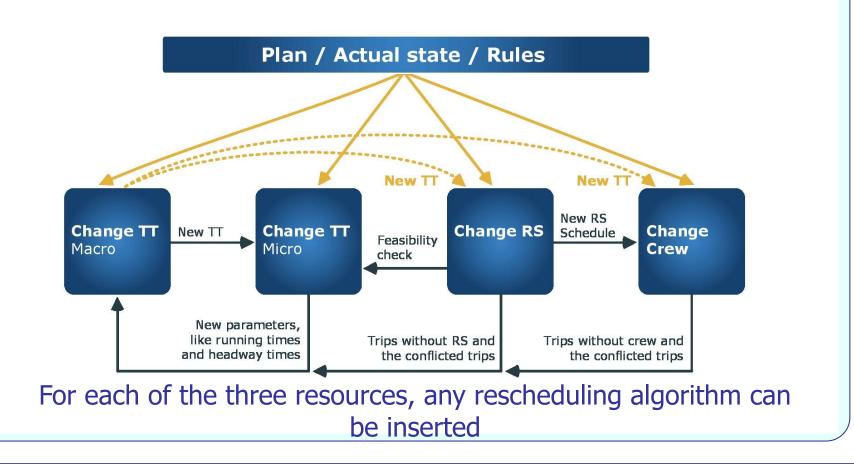
- Questionnaire on best practices
- Structured interviews method
 - \rightarrow Set of representative incidents
- Analysis of real incidents
 - \rightarrow Stages of incident management
- Critical Decision Method
 - \rightarrow A list of key criteria for decision making
 - \rightarrow Typical decisions of operators
 - \rightarrow Information needs
- Repertory grid technique
 - \rightarrow key characteristics of incident management.

Workflow of the recovery process specified by SysML activity diagrams

Borlänge, 16th October2014

State-of-the-art of Recovery Algorithms in Railway Optimization

- Algorithms for rolling stock rescheduling
- Algorithms for crew rescheduling
- First approaches for timetabling
- Resources are always considered independently.
- Combining the individual models has never been tested in literature nor in simulation!


Practice

• 'De solver' at NS for crew rescheduling

Framework of closed loop for integration of the rescheduling phases

Macroscopic timetabling

- Objectives
 - Minimize number of cancelled trains
 - Minimize delays
 - Ensure feasible rolling stock schedule

Measures

- Retiming arrivals and departures
- Short-turning trains
- Reordering trains
- Input
 - Running and headway times

[Veelenturf et al. 2014]

Microscopic timetabling

• Objectives

- Compute headway and process times
- Compute a feasible platform assignment

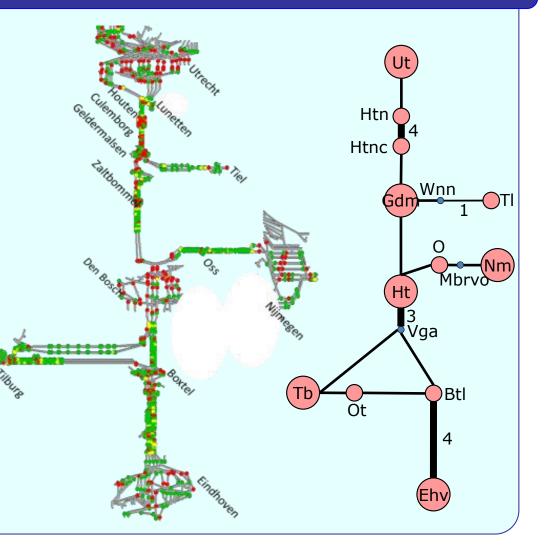
• Approach

- Blocking time theory
- Headway and running times based on speed profiles

• Input

- Macroscopic timetable
- Local train routes
- Alternative train routes

[Besinovic et al. 2013]



Macro and Micro network

Models

- Microscopic network
 - 1500 nodes
- Macroscopic network
 - 15 nodes

Rolling stock rescheduling

• Objectives

- Minimize number of trains without rolling stock
- Minimize deviations from original schedule

Measures

- Assigning rolling stock compositions to trains
- Adding / cancelling shunting operations

• Input

- Macroscopic timetable
- Original rolling stock circulation

[Maróti and Kroon, 2005; Fioole et al. 2006; Nielsen et al. 2012]

Crew rescheduling

• Objectives

- Minimize the number of tasks without crew
- Minimize deviations from the original schedule

Measures

- Assign a (new) duty to all crew members

• Input

- Macroscopic timetable
- New rolling stock schedule
- Original crew schedule

[Potthoff et al. 2010, known at NS as `De solver']

Iterative framework

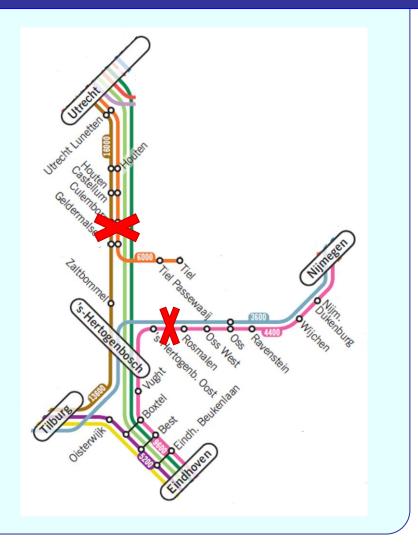
Input: Disruption, planned resource schedules

1. Compute timetable on macro and micro level

2. Reschedule rolling stock

- If there are trips that are not covered
 - 1. cancel these these trips in the timetable
- 3. Reschedule the crew
 - If there are trips that are not covered
 - 1. Cancel these trips in the timetable
 - 2. Go back to step 2

Output: Timetable, rolling stock schedule, crew schedule



Case study

Disruption scenarios

- Resolutionschedules for a-completerentage (burness2012) fromtretethedeldelsnelaeloways
- Zity etable rescheduling on partial difictle greetwork
- Rolfingpsetecklogkaperew
- Aeditationag on the full
 network / 100 / 120 minutes
- 61 start times
 - between 7:00 and 17:00

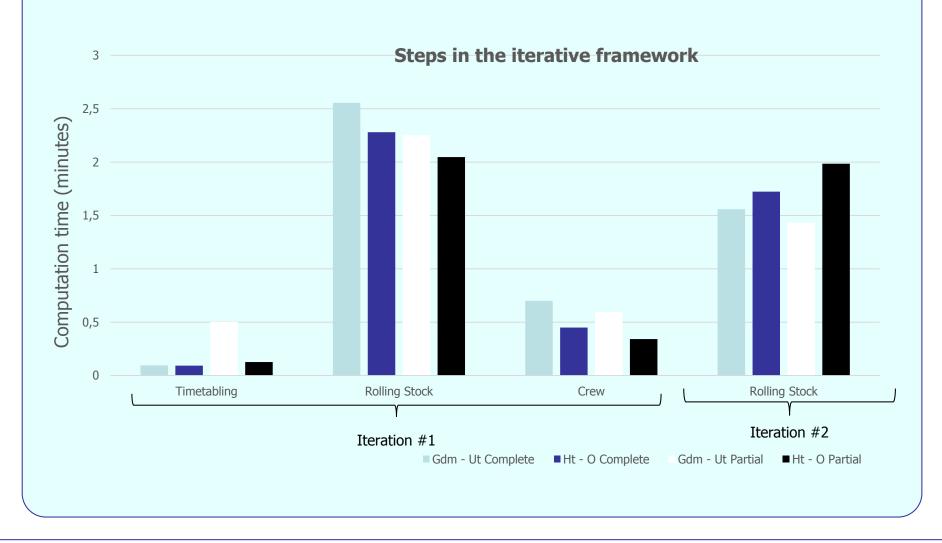
976 disruptions

Computational results

Complete blockage between Ht and O

- On average, 12.6 trips are cancelled.
 - Timetabling: 12.2 trips (204 minutes)
 - Rolling stock rescheduling: 0 trips
 - Crew rescheduling: 0.4 trips (14 minutes)
- The maximum number of cancelled trips equals 18.
- Only in 24% of the cases, a second iteration is required.

Computational results


FP7 - ON-TIME Collaborative Project

Borlänge, 16th October2014

FP7 - ON-TIME Collaborative Project

Borlänge, 16th October2014

Summary of results

- 1. For a large set of disruptions, we can reschedule the timetable, rolling stock, and crew within minutes.
- 2. In our tests, at most two iterations were needed, because rolling stock rescheduling never cancelled additional trips.

Conclusions / Lessons Learnt

- 1. We developed an algorithm for timetable rescheduling.
- 2. We introduced an iterative framework for disruption management that sequentially solves timetable, rolling stock, and crew rescheduling.
- 3. We show that the algorithms individually and combined can be used to solve practical disruptions in a few minutes. This shows that a modular approach works.
- 4. Evaluation in a simulation model turns out to be complex and may not be necessary to show that this concept works.

Deliverables

- **D5.1 :** Functional and technical requirements specification for large scale perturbation management
- **D5.2 :** Decision support tools for the optimal human supervisory control of the recovery processes
- **D5.3**: Analysis of the benchmarking